Tetrahedron Letters No.34, pp. 3311-3312, 1967. Pergamon Press Ltd. Printed in Great Britain.

PHOTOCHEMICAL DE-t-BUTYLATION OF 3,5-DI-t-BUTYL-4-HYDROXYPHEWYL KETONES¹ Teruo Matsuura and Yoshihiko Kitaura

Department of Synthetic Chemistry, Faculty of Engineering

Kyoto University, Kyoto, Japan

(Received 10 May 1967)

Recently studies concerning the photochemical reactivity of aromatic ketones and their ring substituted derivatives have drawn much attention.² Porter and Suppan³ reported that the photochemical disappearance of p-hydroxybensophenone is very low ($\emptyset = 0.02$) in isopropyl alcohol while it shows high reactivity ($\emptyset = 0.9$) in cyclohexane leading to a corresponding pinacol. They suggested that the lowest lying excited state of p-hydroxybensophenone may be a charge-transfer triplet in isopropyl alcohol and an n, π^* triplet in cyclohexane. We report that irradiation of 3,5-di-t-butyl-4-hydroxyphenyl ketones of type I in cyclohexane does not lead to pinacol formation <u>via</u> the n, π^* triplet but a novel de-t-butylation.

In accordance with the results reported by Porter and Suppan,³ both Ia and Ib were unreactive on irradiation⁴ in isopropyl alcohol and were recovered quantitatively. On irradiation in cyclohexane, however, 3,5-di-t-butyl-4-hydroxyacetophenone (Ia)⁵ gradually reacted to give a crystalline hydroxy-ketone (IIa, > 95% based on the reacted Ia), m.p. 175-176°, which was also obtained in 60% yield by irradiation with a low-pressure mercury lamp (essentially 2537 Å light) in the same solvent. Treatment of this product with aluminum chloride in bensene yielded p-hydroxyacetophenone. The n.m.r. spectrum (60 Mc.) shows signals at 7 2.0-3.4 (3H, multiplet, aromatic protons), 7.48 (3H, singlet, -COMe), and 8.61 (9H, singlet, -CMe₃). The structure IIa assigned was confirmed by a synthesis. Irradiation (2537 Å)⁶ of or -t-butylphenyl acetate (IIIa) afforded IIa (24%) as crystals and IVa (26%) as an oil.

Irradiation of 3,5-di-t-butyl-4-hydroxybenzophenone (Ib)⁷ under similar conditions also resulted in de-t-butylation to give 3-t-butyl-4-hydroxybenzophenone (IIb, > 95% based on the reacted Ib), the structure of which was confirmed by a synthesis. Irradiation (2537 Å) of <u>o</u>-t-butylphenyl benzoate (IIIb) afforded IIb (20%) as crystals, m.p. 179-180°, and IVb (35%) as an oil. Irradiation of the methyl ether of Ib in either a polar or nonpolar solvent resulted in pinacolization (55% in isopropyl alcohol and 30% in cyclohexane). The pinacol, m.p. $70-75^{\circ}$, was found to be a mixture of dl- and meso-forms (V) by n.m.r. analysis. The methyl ether of Ia was recovered quantitatively by irradiation in cyclohexane, while it gave three unidentified photo-products in isopropyl alcohol. The above results indicate that the presence of a free phenolic group in I is prerequisite to the photochemical de-t-butylation. It is assumed that the reactive species for the de-t-butylation of these p-hydroxyphenyl ketones bearing a hindered phenolic hydroxyl is not an $n_{s}x^{*}$ triplet state, but photoenolization may be involved. The scope and mechanistic studies of the present reaction are in progress. Satisfactory analyses were obtained for all new compounds.

- (1) Photo-induced Reactions. XII. Part XI, T. Matsuura and Y. Kitaura, preceding communication.
- (2) E. J. Baum, J. K. S. Wan, and J. N. Pitts, Jr., <u>J. Am. Chem. Soc.</u>, <u>88</u>, 2652 (1966) and references cited therein.
- (3) G. Porter and P. Suppan, <u>Proc. Chem. Soc.</u>, 191 (1961); <u>Trans. Faraday Soc.</u>, <u>61</u>, 1664 (1965).
- (4) Irradiations were made with a 450 w. high-pressure mercury lamp (Pyrex filter) under bubbling nitrogen, unless otherwise indicated.
- (5) T. Matsuura, A. Nishinaga, and H. J. Cahnmann, J. Org. Chem., 27, 3620 (1962).
- (6) Cf. H. Kobsa, <u>ibid.</u>, <u>27</u>, 2293 (1962).
- (7) C. D. Cook and N. D. Gilmour, *ibid.*, 25, 1429 (1960).

3312